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Radial distribution functions of 
non-crystalline polymers and their application 
to the structural analysis of PMMA 

J. R. WARING* ,R .  LOVELL,  G. R. MITCHELL,  A. H. WINDLE 
Department of Metallurgy and Materials Science, University of Cambridge, 
Pembroke Street, Cambridge, UK 

The use of Radial Distribution Functions (RDFs) in the determination of the structure 
of non-crystalline polymers is briefly reviewed. Particular aspects of the procedure for 
preparing RDFs from X-ray scattering are discussed in detail; namely the employment 
of an energy dispersive detector to remove the Compton component of the scattered 
X-rays and the application of the method of sampled transforms. A R DF is presented 
for atactic polymethylmethacrylate (PMMA) and its precision and reliability are 
discussed. It is analysed by comparison with R DFs calculated from computer-generated 
atom co-ordinates for isolated lengths of PMMA chains in different conformations. 
Methods are introduced by which the calculated R DFs are smeared to account for 
random disorder in the real chain and normalized so that, despite the finite range of the 
model, they can be immediately compared with the difference R DF which is directly 
obtained by transforming the data. Comparison between experimental and calculated 
RDFs shows that reasonable agreement is only obtained for a very limited range of 
conformations corresponding to sequences of backbone bond rotation angles of (10 ~ 
10 ~ -- 10 ~ -- 10 ~ and the bond angles alternately 110 ~ and 128 ~ The form of the RDF 
appears very sensitive to important aspects of the molecular structure. The results both 
confirm and refine an earlier proposal from this laboratory which was based on com- 
parisons between experimental and calculated functions in reciprocal space. 

1. Introduction 
1.1. Radial distribution functions of 

non-crystalline polymers 
X-ray diffraction from non-crystalline materials 
produces diffuse peaks which are commonly 
analysed in terms of Radial Distribution Functions 
(RDFs). Such functions are generated by Fourier 
transformation of the reduced data and are the 
spherically averaged distributions of inter-electronic 
(or alternatively interatomic) vector lengths within 
the material. The usefulness of a RDF stems from 
the fact that interpretation is more straight- 
forward than the corresponding scattering func- 
tion, for it obviously cannot contain more inform- 
ation than the diffraction pattern from which it is 

derived. However, the analytical process does tend 
to enhance the scattering information due to 
shorter range correlations at the expense of that 
corresponding to larger distances. For example, 
with organic polymers the covalently determined 
first and second nearest-neighbour distances show 
up as clear peaks in the RDF, whereas on the 
diffraction pattern, they correspond to long 
wavelength oscillations which are not especially 
apparent. On the other hand diffuse diffraction 
peaks which occur at lower angles and are not 
particularly intense, such as that at s = 7 mn -1 in 
the pattem from polystyrene [1] (s = 4rr sin0/X, 
where 0 is the Bragg angle and X is the wavelength 
of the X-rays) do not lead to any distinctive 
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features on the RDF even though they may bear 
important structural information. 

The ftrst RDF of an amorphous polymer w a s  

published by Simard and Warren [2] for natural 
rubber in 1936. Later, in 1954, Bj~brrthaug e t  al. 
[3] calculated RDFs of several non-crystalline 
polymers from photometric intensity measure- 
ments on X-ray films. The expected 0.15 nm and 
0.25 nm repeats (representing the fixed distances 
between first and second nearest-neighbours 
joined by covalent bonds) were clearly shown. 
The authors suggested that peaks at distances 
greater than 0.5 nm were due to inter-molecular 
distances. 

Since this comparatively early work, RDFs have 
been published for polystyrene [1 ], polycarbonate 
[4] and polyethylene terephthalate [5, 6]. The 
polyethylene melt has also been analysed on the 
basis of both X-ray data [7, 8] and electron 
diffraction measurements [9, 10]. It is note- 
worthy that the two papers dealing with RDFs 
derived from electron "diffraction, which tend to 
have better resolution for distances less than 
0.5 nm, are able to present firmer (although con- 
flicting) proposals regarding intramolecular order. 

For RDFs from polymer glasses there have 
been several attempts to correlate the functions 
with interatomic distances corresponding to par- 
ticular conformational models of isolated mole- 
cules [4, 7, 9] .  Although some of these results 
do provide structural indications, it is perhaps 
fair to say that they are not totally convincing. 

1.2. The  scope of  this paper  
As part of a broadly based programme to explore 
the structure of non-crystalline polymers, we have 
set out to optimize the procedure of RDF analysis 
in an effort to explore its full potential as a struc- 
tural technique. As a result of a critical examina- 
tion of the experimental, analytical and interpre- 
tive stages of the complete procedure, several 
developments have been made. Of these, the use 
of an energy dispersive detector in data collection 
and the introduction of the method of sampled 
transforms to reduce termination error have 
already been described [11, 12]. In this paper we 
examine other variations in the RDF procedure 
with the objective of achieving the maximum reso- 
lution while ensuring freedom from spurious 
detail. We have chosen to work with atactic poly- 
methyl methacrylate (a-PMMA) but the results 
are generally applicable, particularly to other non- 
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crystalline polymers [13]. The significant question 
as to whether RDFs, even when produced with great 
care, are sensitive enough to minor changes in 
molecular conformation to be a valid tool in 
structural analysis is explored by comparisons with 
RDFs calculated from computer-built models 
of isolated molecules in different conformations. 
The work demonstrates that RDFs are indeed 
sensitive to small conformational changes. 

For PMMA, we have previously made detailed 
proposals of the conformational structure based 
on comparisons made in reciprocal space [14, 15]. 
However, the generation of a trustworthy RDF of 
reasonable resolution now enables us to check 
these proposals in real space and to determine 
whether the fact that RDFs usually show more 
peaks than a scattering function can enable a freer 
differentiation to be made between different 
structural models. In short, we use the RDF both 
to check and refine our existing model. 

2. Development of RDF analysis for 
non-crystalline polymers 

A brief account of the established RDF procedures 
is given in Appendix 1. In this section we point to 
some of the difficulties which are particularly 
apparent in RDF analysis of polymers and outline 
the method of sampled transforms which over- 
comes several of the problems. 

The transform integral used to generate radiat 
distribution functions must operate between the 
limits zero and inffmity. Experimental data how- 
ever are necessarily terminated at a f'mite value of 
s, i.e., Sma x. The straightforward application of 
many transform (computer) routines will calcu- 
late RDFs at intervals which can be varied at will, 
and there is a tendency to reduce these intervals 
to a minimum to facilitate the drawing of smooth 
curves. The transform integral, however, effec- 
tively operates on the data as if they run from 
s = 0 to infinity but step artificially to zero at 
srnax- The transform of the unreduced data in 
Fig. l a will contain a dominant ripple known as 
termination error. The production of an RDF 
requires that the data is s-weighted before trans- 
forming which has the effect of making the step 
at Sma x relatively more prominent. The resultant 
ripple on the RDF can totally swamp any useful 
information. 

Reduction of the corrected data to give the 
interference function (Fig. lb) by subtracting a 
suitably scaled .Z .f2 function together with the 
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Figure 1 Showing (a) plot of the fully corrected X-ray intensities for PMMA as a function of scattering vector, s, where 
s = 4 7r sinO/h, (b) an interference function prepared from the intensity plot by normalizing to the independent scatter- 
ing (l~f 2 + Compton component). 

Compton component will have the .effect of con- 
siderably reducing the step at Sma x and thus the 
unwanted ripple on the RDF. In fact, in the 
production of RDFs of polymers where the main 
interest focusses on the information at medium 
and high values of r, the most important purpose 
served by normalization is the reduction of termi- 
nation ripple. The removal of intra-atomic dis- 
tances which prevail at values of r less than 0.2 nm 
and the distortion due to the presence of Compton 
scattering assume secondary importance. 

Perfect normalization depends on an absolutely 
precise knowledge of ~ f ~ ,  and the correct calcu- 
lation of the ComptOn component. The latter, in 
particular, is especially difficult owing to the com- 
plex interactions between absorption and multiple- 
scattering corrections. Even if it were possible, 
the interference function may still be non-zero at 
Smax, SO a termination discontinuity can remain 
and with it the possibility of spurious information 
on the RDF. Sharpening, by division of the inter- 
ference function by (.Z?fl) 2, further exaggerates 
any step at Smax a n~d therefore enhances the 
spurious ripple. Control of such temination error, 
particularly on atomic RDFs, has often been 
achieved by smoothing or damping. But when it 
is borne in mind that the interference function is 
damped by multiplying it by a function which is 
often very similar to the sharpening denominator 

(~. f~)2, the limited value of the approach becomes 
a~parent. This argument was presented by Wignall 
and Longman [4], who have also used a technique 
[16] for the reduction of termination error by 
selecting Sma x at a value where the interference 
function crosses zero. This method, while reducing 
the ripples in the RDF due directly to the step at 
Sraax will tend to enhance those resulting from the 
discontinuity in the first and higher derivatives of  
the interference function. The net result however 
is advantageous. 

The method of sampled transforms introduced 
into RDF analysis by Lovell, Mitchell and Windle 
[12] largely overcomes the problem of spurious 
ripples due to termination error. In effect the 
transform is only calculated at values of r which 
correspond to sine waves of wavelengths that are 
particular factors of Sma x. For the case of an 
interference function terminated at an arbitrary 
point (i.e. not at a node), the RDF is best calcu- 
lated at values of 

r = (2n + 1)Tr/2Smax (n = 0, 1, 2 . . . )  

with subsequent averaging over each successive 
three-point sequence, although the averaging does 
reduce the resolution in the RDF. The use of 
sampled transforms has one significant advantage: 
a termination step in the interference function at 
Smax, irrespective of its origin, will not in itself 
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cause misleading or swamping ripples. There will 
of course still be limited resolution on account of 
the missing scattering information beyond Smax. 
Very bad normalization will give rise to a peak 
(positive or negative) between 0 and 0.1 nm which 
may have second or third harmonics, but in general 
where a reasonable level of normalization has 
been obtained the RDF will be no more than 
slightly distorted. An additional advantage ~of 
sampled transforms is that the spacing of the 
calculated points on the RDF gives a useful indi- 
cation of the resolution to which one is entitled, 
on the basis of the particular range of s available. 

It can be shown that the RDF generated using a 
sampled transform is not significantly affected by 
the deliberate introduction of bad normalization, 
and even in the extreme case of no normalization 
the important features of the RDF at medium r 
and above are still apparent. We have employed 
the sampled transform method for the generation 
of the RDF of PMMA, not because it removes the 
onus of reducing the data so as to produce the 
best possible interference function, but because 
it does not exaggerate the deficiencies which are 
bound to be present even in the best interference 
function. 

For polymers, the RDF shows sharp maxima 
corresponding to covalent-bond-determined nearest 
and next-nearest neighbour distances. This infor- 
mation is of little value, as it can be derived 
directly from a knowledge of the chemical struc- 
ture of the molecule. However, under some circum- 
stances it can tend to swamp peaks due to short 
correlations which are conformationally sensitive 
(e.g. third nearest-neighbour distances). When this 
occurs it is advantageous to remove the dominant 
covalently determined peaks by normalizing the 
data to a y~f2 function modulated by the calcu- 
lated interference corresponding to the chemically 
defined distances. This procedure is not in fact 
used in the RDFs presented in Section 3.2, but is 
described and illustrated in Appendix 2. 

3 .  T h e  R D F  o f  P M M A  
3.1.  Expe r imen ta l  m e t h o d  
The data from PMMA (ICI Perspex) were collected 
using a Philips horizontal diffractometer (PW 1380), 
a molybdenum target tube and parafocussing 
symmetrical reflection geometry. The detector 
was a Si(Li) crystal (KEVEX) which, combined 
with a multichannel analyser, enabled tile Comp- 
ton component of  the radiation to be separated 
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Figure 2 Form of beam profile at the specimen, used in 
the absorption correction, determined for nominal half 
degree slits. 

reliably. The method developed to achieve separ- 
ation and further experimental details are pub- 
lished elsewhere [11]. The data for coherent 
scattering were smoothed to remove the statistical 
scatter using the method of fitted cubic splines 
[ 17] and then interpolated onto an s scale (where 
s = 4 zr sin0/k). 

As no monochromator was employed the cor- 
rection for polarization was particularly straight- 
forward. The correction for absorption in the 
reflection geometry was not so simple. The method 
employed was a development of that due to Mil- 
berg [18] who calculated analytical expressions 
for the absorption correction for an infinite sheet 
sample. We numerically integrated over the illumin- 
ated volume, which varies as a function of diffrac- 
tion angle and, of course, slit geometry. The linear 
absorption coefficients were calculated from mass 
absorption coefficients in International Tables 
[19]. The fact that Compton Scattering was 
removed experimentally meant that the linear 
absorption coefficient could be taken to apply to 
the MoKa wavelength alone. The X-ray intensity 
distribution across the surface of the specimen was 
determined experimentally by measuring the dif- 
fraction intensity from a particularly narrow speci- 
men as a function of its off-axis position in the 
symmetrical plane. For the purposes of the calcu- 
lation the profile was approximated by the trape- 
zium form of Fig. 2. The nominal width corre- 
sponding to the 0.5 ~ slits used is shown by the 
vertical lines. 

For organic materials the calculation of multiple 
scattering is particularly complicated as it is 
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Figure 3 Atomic RDF, (4~rr2(p(r)--po)), calculated 
from the data of Fig. 1. 

necessary to consider the interaction of multiple 
scattering events with the coherent to non-coherent 
(Compton) events [11 ]. In principle, correction 
equations of the type developed by Warren and 
Mozzi [20] can handle this interacting situation; 
however, they will need to be extended to account 
for specimens of finite thickness before they are 
readily applicable to this work. But calculations 
after [20] show that at least 99% of the doubly 
scattered radiation will be incoherent [11], due 
mainly to the fact that the scattering cross-section 
is much less for the elastic case than it is for the 
Compton one. The useful consequence of this 
result is that if the incoherent component of the 
scattered radiation is removed experimentally, as 
it has been in the current work, then the vast 
majority of double scattering goes with it [11]; 
indeed to such an extent that the multiple scatter- 
ing correction is no longer really necessary. 
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Figure 4 Meridional ( - - )  and equatorial ( ..... ) sections 
of the cylindrical distribution function determined from 
an oriented sample of PMMA. 

functions (CDF) derived using the scattering from 
oriented a-PMMA [21] show that the 0.67 and 
0.92 nm peaks are intra-chain in origin, although 
they are superimposed on a broader inter-chain 
peak at around 0.8 nm. This peak is the first com- 
ponent of a damped ripple which is the  typical 
manifestation of inter-chain correlation [13] in a 
polymer RDF. The peaks at 0.33 and 0.47 nm are 
also intra-chain. It is this region of the RDF which 
is particularly sensitive to small conformational 
changes, as is demonstrated in Section 5 below. 

Fig. 4 is a plot of the equatorial and meridional 
sections of the CDF and clearly illustrates that the 
0.67 and 0.92 nm correlations are along the direc- 
tion of the molecular axis. (The 0.33 and 0.47 nm 
peaks are not resolved in this plot which Shows 
an "electronic" function.) 

3.2. The RDF 
The atomic RDF for PMMA is plotted in Fig. 3. 
It is expressed as a radial density function, 4rrr  2 
(p ( r ) -  P o) and has been calculated from the inter- 
ference function using the method of sampled 
transforms. Beyond the peaks at 0.15 nm and 0.25 
nm, corresponding to distances fixed by covalent 
bonds, the main features are peaks at 0.67 nm and 
0.92 nm which appear in the previously published 
RDF of PMMA [3]. However, the resolution 
achieved enables additional features to be resolved 
in the 0.3-0.6 nm region. Cylindrical distribution 

4. Precision and r e l i a b i l i t y  o f  t h e  R D F  

A major difficulty in comparing experimentally 
determined RDFs with those from models stems 
from having to know which of the more minor 
peaks can be taken as genuine. In other words, it 
is important to know the error limits before any 
RDF is used for structural predictions. 

Errors are introduced at each stage in the experi- 
mental and analytical procedure. We have however 
set out to evaluate the consequences of the more 
important errors for the RDF of PMMA. 

The types of error introduced have been dis- 
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cussed by several authors [22--25] together with 
detailed examination of the errors due to instru- 
mental effects [26] smoothing [17], small-angle 
scattering [27] and scaling errors [28]. 

4.1. Distortion of RDF due to statistical 
uncertainty in the data 

Short wavelength random fluctuations in the data 
due to counting statistics cause somewhat similar 
fluctuations on the RDF [17, 22]. Konnert and 
Karle [24] give an approximate relationship for 
the variance in the RDF (G (r)), o 's (r), produced 
by random errors on the sZ(s) curve: 

0 '2 [rG(r)l ~- ~ a(s) sin rs , (2) 

where a(s) is the standard deviation in the inter- 
ference function, and sZ(s) is the s-weighted 
reduced intensity function. 

The various o(s) may be obtained by analysis of 
the raw intensity values [25] and weighted with 
the appropriate factors. Although the magnitude 
on the noise (apart from the multiplication correc- 
tion factor) is unchanged by the data correction 
procedure, the data values themseives are consider- 
ably altered by the subtraction of the independent 
scattering. Hence the signal-to-noise ratio in the 
interference function is particularly enhanced at 
high s values where the observed scattering is pre- 
dominantly independent in nature. The effect of 
the noise may be greatly reduced by the use of an 
appropriate smoothing procedure [ 17]. 

Since the raw intensity curve at high s values 
contains only broad shallow peaks, the high-frequ- 
ency noise component may be heavily smoothed 
and thus compensate for the noise enhancement 
due to the intensity reduction process. We have 
found the computer smoothing routine discussed by 
Dixon etal. [ 17] to be well suited for this procedure. 

4.2. Distortions at low values of r 
Incorrect compensation for the effects of multiple 
scattering, absorption and the incoherent compo- 
nent tends to produce errors in the interference 
functions which vary smoothly with s. As a result 
they will only upset the RDF at low values of r. 
For polymers, both the correct position and rela- 
tive areas of the peaks near 0.15 and 0.25 rtm can 
be taken as an indication that these errors are 
reduced to levels where they will not distort the 
structurally more important information at higher 
levels of r. Comparisons between the RDF and the 
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function 4 lr r z P0 at very low values of r  can be used 
as a yet more stringent test for the presence of this 
class of error. 

4.3. Ripples due to termination error 
Unlike the previous errors, termination error, which 
at its worst can totally swamp a RDF in short- 
wavelength ripples, can be almost eliminated by 
making straightforward changes to the analytical 
procedure. The method of sampled transforms 
has been employed in this work. 

4.4. Evaluation of errors 
It is not possible to calculate the forms of error, 
other than that derived from statistical sources, 
with any degree of confidence. If there is doubt 
as to any feature in a RDF, the best method of 
checking its validity is to smooth it out and back- 
transform the function so as to reconstitute a 
modified interference function and thence a set 
of "decorrected data". Comparison with the 
original scattering data will show the features 
which correspond to that removed from the RDF 
and indicate whether they can be considered signifi- 
cant. There are in addition several general guide- 
lines in Appendix 3. 

5. Calculations of RDFs of model 
structures 

5.1. General 
We have concentrated on modelling single chains 
since the sharpest feature in a RDF of a polymer 
come from distances within the chains. Modelling 
of multiple-chain systems can only be easily carried 
out for parallel packing of straight chains or regular 
helices. The general problem of modelling the pack- 
ing of curved or highly irregular chains is yet to be 
solved, although some success has been obtained 
with simple systems [29, 30]. We now describe 
how a model RDF can be calculated from a single 
chain in the form for easiest comparison with 
experimentally determined RDFs. 

The first stage of the procedure is the calculation 
of the atomic co-ordinates for a length of molecule 
using a computer chain-building routine. Bond 
lengths and side-group conformations are set to 
fixed values, the desired chain conformation being 
specified by backbone bond angles and rotation 
angles. For PMMA the fixed values were those 
used by Sundararajan and Flory [31] with the 
ester sidegroup planar with the O-CH3 bond cis 

' to the C=O bond. 
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The length o f  chain which is built depends not 
only on the maximum distance, rmax, out of  
which the RDF is to be calculated, but also ori the 
regularity of  the chain. A longer chain is needed 
for a highly irregular conformation to ensure that 
a representative sample of  the different confor- 
mations is obtained. 

The interatomic distances, ru, are calculated 
from the atomic co-ordinates, each distance being 
weighted with ZiZj ,  where Z i is the number of  
electrons on the ith atom. This is necessary since, 
even in sharpened RDFs derived from X-ray (or 
electron) scattering, the peaks are weighted by 
these factors. The histogram of  interatomic dis- 

Figure 5 (a) Histogram of interatomic distances calcu- 
lated for a section of a PMMA chain which for this 
example is in an all-trans conformation. (b) Histogram 
smeared with a variable width gaussian function to 
account for various modes of intrachain disorder. It 
represents a RDF of the type 4rrr2p(r). The dotted 
line is produced by extensive smearing and represents the 
shape function of the model, i.e. 4 rrr2Po. (c)The differ- 
ence RDF for the model, 4 zrr 2 (p(r)--P0), which is in a 
form suitable for direct comparison with the experimental 
RDF (Fig. 3). 

tances is then normalized to one atom by dividing 
it by the number of  atoms in the model. This 
gives a first approximation to the total electronic 
RDF. To approximate the total atomic RDF, the 
histogram should be divided by a furtherZ 2 , where 
Z is the average number of  electrons on an atom. 
(For a model containing only one type of  atom 
this cancels out the Z i Z  j factor applied earlier.) 

The histogram (Fig. 5a) differs in three distinct 
ways from experimental RDFs. Firstly, it has much 
sharper features than the experimental RDF. 
Secondly, it only has positive (or zero) values and 
approximates to a total RDF, 4rrr2p(r), rather 
than the reduced RDF, 4 rrr2(p(r)--Po),  usually 
derived from data. Thirdly, it decays to zero at 
rmax, the maximum dimension o f  the model. 

We now show how to modify the histogram to 
give a model RDF in a form similar to the experi- 
mental one. 

5 . 2 .  Peak broadening 
There are a number of  reasons why a RDF 
derived from experiment has broader peaks than 
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those in the model RDF: 
(a) The finite range of the scattering vector, s, 

limits the resolution to  ff/$raax, which is approxi- 
mately 0.02rim for Sraax = 1 5 0 r i m - l -  No real 
features sharper than this limit can appear in an 
experimental RDF [ 12]. 

(b) Thermal motion broadens the peaks, par- 
ticulady for the third and more distant neighbours. 
The different modes possible within polymer chains 
are (in increasing order of softness) (i) bond stretch- 
ing, which affects all bonded distances, (ii) bond 
angle distortions, which affect atoms separated 
by two or more bonds, (iii) torsional oscillations, 
wt~ch affect atoms separated by 3 or more bonds. 

(c) In an electronic RDF, each interatomic 
distance is smeared by the electron distributions 
of the two atoms. 

There are various ways that these effects can 
be incorporated in model RDFsi 

(a) The limited resolution could be simulated 
by calculating the scattering from the model using 
the Debye formula [32] and then transforming 
back to the RDF using the same Smax as for the 
data. However, comparison between calculated 
and experimental scattering would be more straight- 
forward than transforming back. Alternatively, the 
resolution in the model RDF could be reduced by 
convolution with a peak-broadening function of 
constant width. The form of this function should 
take account of any damping function applied to 
the scattering before transformation [32-34] .  

(b) The most satisfactory method of introduc- 
ing the effects of thermal motion is to build the 
model chain with these included, i.e., to assign 
values of bond lengths and angles randomly 
distributed within a range comparable with that 
expected for thermal motion. Alternatively, a 
peak-broadening function with a width increasing 
with r, could give a good approximation to the 
effects of thermal motion. This is the method 
adopted here. 

(c) Ideally, to take account of the electron 
distribution of the atoms, each pair distribution 
function should be broadened with the convolu- 
tion of the two atoms before all the pair distribu- 
tion functions are combined to give the RDF. 
However, since the widths of the electron distri- 
butions of most of the atoms in polymers are simi- 
lar, a single broadening function is adequate. This 
broadening is not, of course, included in the struc- 
tural analysis below since comparison is made with 
atomic RDFs. 
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To model the first two types of broadening as 
simply as possible, we have adopted a Gaussion 
broadening function with a standard deviation, tr, 
given by 

r 2 = oI + r 2 where Oo = 0.02 nm 

and ox = 0.008nm. 

O) 

These figures were chosen to give the RDFs the 
same general appearance in terms of the width and 
relative weights of peaks as is typical of experi- 
mental RDFs. Fig. 5b shows the effect of smear- 
ing the histogram of Fig. 5a using this function. 

5.3. Reduction of model RDF 
By subtracting a suitable function of r from the 
broadened histogram, we can obtain a distribution 
function which oscillates about the horizontal zero 
axis and is thus directly comparable with the 
reduced RDF. The problem is to find the correct 
function to substrate. In general, this may be 
written as 47rr = P0 %(r)  where 3`o(r) is the self- 
convolution of a volume with the same size and 
shape as the model. This shape function 3`o(r)is 
used in the theory of small-angle scattering [19, 35] 
where it is called the characteristic (or correlation) 
function. It is unity at r = 0 and decays to zero at 
r = rraax, and although its behaviour at small r is 
given by [35] 

Sr 
3'o(r) = 1 4V'  (4) 

where S is the surface and V is the volume of the 
model, a simple expression for 7o(r) can only be 
derived in a few special cases. 

For a very large model with dimensions in all 
directions that are much greater than needed in 
the RDF, we may take 3`o(r) = 1 and hence sub- 
tract 4 rr r2po from the histogram. 

For a spherical model of radius R [35] 

( 3`o(r) -- 1 -- 1 + , (5) 

whereas, for a cubic model of side L, [36, 37] : 

1 _• 
3`~ = 2 \L ] + 7r\L ] 47r\L ] 

(6) 

for r ~< L, but it is much more complex for r > L. 
Porod [36] .has attempted to formulate general 
rules for how 3'o(r) depends on the shape but it. 
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Figure 6 Representation of the 
chemical structure of a racemic 
dyad of PMMA, the basic unit 
of  the model chains. All rota- 
tion angles are shown as zero. 

seems that; for our purposes, using 3'o(r) is only 
suitable for a spherical model. 

As the single chains we are modelling are gener- 
ally nowhere near spherical, we have adopted a 
different approach. This is to smear out the 
features of the broadened histogram still further 
so that only the general shape remains. We found 
that a Gaussian smearing function with a standard 
deviation of 0.08 nm was adequate for this. The 
fully smeared form is shown as the dashed line in 
Fig. 5b. The difference between the two curves is 
plotted in Fig. 5c and is the reduced RDF of a 
finite single chain of PMMA. Since this work was 
completed, a more exact, less empirical procedure 
for deriving the shape function has been developed 
[38]. 

6. Comparison of experimental RDF of 
PMMA with model RDFs 

The main conclusion of our earlier work on PMMA 
[15] was that the conformation is close to all- 
trans but with a marked difference between the 
alternate backbone bond angles 0, (at the sub- 
stituted carbon atom), and 02 (at the methylene 
carbon atom), giving a curved backbone. We have 
in general confirmed this conclusion by comparing 
the positions of peaks in model RDFs with those 
of the experimental RDF. The prominent peaks in 
the experimental RDF (Fig. 3) at 0.67 nm and 
0.92 nm are considered first. (The various angles 
are defined in Fig. 6.) 

The model RDFs of Fig. 7a show that the all- 
trans conformation with 01 = 02 = 116 ~ does not 
give peaks anywhere near the correct positions. 
However, a peak close to 0.92 nm can be obtained 
by decreasing 01 to 110 ~ and increasing 02 to 
122 ~ or more. This peak is, moreover, quite insen- 
sitive both to departures from all-trans of 20 ~ or 
so, and to changing X, the side group rotation 
angle, from 0 ~ "to 180 ~ 

The peak at 0.67 nm is much more sensitive 
to conformation and Figs 7 and 8 show that its 
presence requires X to be predominantly 180 ~ 
with 02 in the range 122 ~ to 128 ~ and ~b between 
0 ~ and 10 ~ This peak mainly represents distances 
,between alternate sidegroups which move apart as 
the difference between 01 and 02 causes the back- 
bone to curve. The difference in peak position 
apparent between Conformations with X = 0 and 
180 ~ is because X= 180 ~ puts the ester-methyl 
groups further from the centre of curvature and 
hence increases the distance between alternate 
ester-methyls. 

A peak near to 0.47 nan is a feature of most of 
the RDFs in Figs 7 and 8. A substantial contribu- 
tion to this peak comes from the conformationaUy 
insensitive distances between the a-methyl and 
ester-methyl groups of the same monomer unit. 
The fact that such a relatively small peak is also 
seen in the experimental RDF elicits confidence 
in the general procedure. The experimental peak 
at 0.34 nm appears in few of the model RDFs, 
most conformations giving a peak between 0.36 
and 0.37 nm. In fact, only for model conforma- 
tions with 02 = 128 ~ and ~ = 10 ~ to 20 ~ is there 
a peak in the correct position. Consideration of 
all the peaks in the experimental RDF confirms 
that the conformation is close to that put forward 
on the basis of comparisons between experimental 
and calculated scattering [15], that is (10 ~ 10 ~ 
- -10  ~ - -10  ~ with 01 = 1 1 0  ~ and 02 = 1 2 8  ~ 
although, on the basis of this RDF analysis it 
appears that an ester group rotation angle of X = 
180 ~ is to be preferred. The proposed model is 
drawn in Fig. 9. The relevance of the curvature of 
the molecule to the non-crystallizability of bulk 
syndiotactic PMMA has previously been alluded 
to [151. 

It has not been possible on the basis of this 
RDF analysis to refine the estimate of the run 
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length of this underlying conformation made 
earlier [14, 15]. Since estimates of the length can 
only be derived from a RDF by precise com- 
parison of relative peak heights, a more reliable 
measure may be obtained by analysis of the widths 
and shapes of peaks in the interference function. 

In Fig. 10 we compare the RDF for the pro- 
posed conformation with RDFs for three confor- 
mations which have been proposed earlier as a 
result of energy calculations. It can be seen that 
these earlier proposals give RDFs which are in 
poor agreement with experiment. Even the con- 
formation proposed by Sundararajan and Flory 
[31], which gives scattering in good agreement 
with experiment, gives a relatively poor fit to the 
RDF. This demonstrates an apparently superior 
sensitivity of the RDF analysis, even though the 
experimental information can be no more than 
that in the measured scattering. 

7. Conclusions 
An RDF has been prepared from X-ray scattering 
data from atactic PMMA. The data were collected 
using an energy dispersive detector, which elimin- 
ated the need for independent calculations of the 
Compton component and multiple scattering. The 
errors present in the RDF have been examined 
and where possible assessed quantitatively. It is 
held that the RDF presented is free from spurious 
features of any kind. 

On the basis of comparisons between experi- 
mentally determined RDFs and similar functions 
calculated from computer-built models, a con- 
formation is proposed for atactic PMMA. It is: 
(~1,  ~2, r (~4)= (10 ~ 10 ~ - -10 ~ --10~ i.e. 
near all-trans,01 = 110~ = 128~ = 180 ~ 

The advantages that RDF analysis has over 
comparisons in reciprocal space appear as: 

(a)A carefully prepared experimental RDF 
tends to have more peaks than does the corre- 
sponding scattering. 

! 
J 

Figure 9 Drawing of a segment 
of a syndiotactic PMMA chain 
in the proposed conformation. 

(b) The peak positions in an experimental RDF 
are insensitive to errors in corrections, since errors 
in multiplicative corrections convolute the true 
RDF with a symmetrical function. 

(c) A RDF is more sensitive to small confor- 
mational changes than is the scattering. 
There are also disadvantages: 

(a) It can be difficult to separate the RDF into 
its intra- and inter-chain components but this 
can be aided by Calculating cylindrical distribution 
functions from oriented specimens. 

(b) A considerable amount of data correction 
and manipulation is needed but almost the same 
effort is required to obtain reliable reduced 
scattering, sZ(s). 

(c) Changes in regularity or sequence length 
are reflected in the relative magnitudes of peaks 
in the RDFs, whereas in the scattering there are 
distinct and obvious changes in peak shape. 

However, although it is possible to contrast 
data-model comparisons in real and reciprocal 
space, the approaches are best seen as com- 
plementary. In fact, in this structural investi- 
gation the RDF analysis and comparison in real 
space served to confirm and refine the model 
put forward on the basis of  reciprocal space 
comparisons made in an earlier stage of this 
work [15]. 
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Appendix 1" Brief review of RDF 
procedu re 

The method of RDF analysis has been extensively 
reviewed, for example [22], so the purpose of 
this brief sketch is one of convenience in that it 

1181 



I 
k. 
Q .  

N 

(a) 

(b) 

$ $ $ 

$ $ $ $ 

(c) I A A 
V ~ 

(d) 

I I 

0.5 1.0 r (nrn) 
Figure 10 A RDF (a) calculated for proposed conformat ion  
(arrowheads show experimental  peak positions). (b) calcu- 
lated for a model  of  the  model  of  Sundararajan and Flory 
[31] .  C s =  (10, 1 0 , - -  1 0 , - -  1 0 ) , ( 0 1 , 0 2 )  = (110 ~ , 112~ 
X = 0 ~ (c) f rom the  first model  o f  Grigovera et al. [39]. 
C s =  (0, 150, 0, --  150); (0 a = 0~) = (114~ X = -+ 30 ~ 
(d) f rom the  second model  of  Grigovera et al. [40] r = 
(10, 10, - -  10, - -  10), (01 = 02) = (114~ and X = 0 ~ 
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outlines the actual method used in this work as 
well as defining the symbols used. 

Before the experimental scattering data can be 
transformed to give a RDF it must be both cor- 
rected and reduced. For X-radiation, correction 
must be made for polarization, multiple scattering 
and absorption; and as the RDF is derived from 
coherently scattered radiation, the incoherent 
(Compton) component must be removed. Usually 
the Fourier transformation is carried out on the s- 
weighted reduced intensity function (sZ(s), s = 
4nsinO/k). This is derived by normalizing the 
corrected experimental intensity to the indepen- 
dent scattering of an individual atom (E l2 ) ,  aver- 
aged over the unit of composition and then sub- 
tracting the latter from the normalized data. Com- 
pton scattering may also be subtracted at this 
stage if calculated theoretically and scaled to 
~ f 2 .  Hence: 

Z(s) = kIeo~r(s)-- ~ f 2 ( s ) - - i c o m p ( S ) ,  (A1) 
u c  

where k is the normalization constant Icorr(S) is 
the corrected experimental intensity Zue f2(s) is 
the summation of [atomic scattering factor] 2 over 
the unit of composition and icomp(S) is the Com- 
pton intensity (calculated). 

Normalization has two effects: first, distances 
between electrons of the same atom are removed 
from the RDF. Secondly, spurious ripples pro- 
duced as a result of the abrupt termination at 
some maximum experimental scattering angle, 
where the intensity is still significant, are in prin- 
ciple avoided. This is achieved because the experi- 
mental scattering and Zue f2(s) can be expected 
to converge at sufficiently large s giving Z(s) ~ O. 

X-ray and electron diffraction respond to dif- 
ferences in electron density. Removal of the elec- 
tron distribution of an average atom by deconvolu- 
tion converts the electronic RDF (W(r)) to an 
atomic RDF (G(r)). Conventionally this is achieved 
by dividing the function to be transformed by the 
transform of this electron distribution (Stokes 
method). The process is usually known as 
sharpening. 

The various steps involved in RDF analysis are 
summarized in Figs A1 to A9 which also serves as 
a glossary of the nomenclature used in this paper. 

Append ix  2: Removal of known distances 
from a R D F 

A technique has been developed [41] which 
reduces the swamping effect of the first and 
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Figure A1 Showing a summary of the steps in the RDF analysis, the raw data. 
Figure A 2  The raw data is corrected for polarization, absorption and multiple scattering, is smoothed and interpolated 
to constant As. 
Figure A 3  The independent scattering for an "average" atom in the system being considered is calculated. This is in 
fact the transform of the distribution of intra-atomic electron-electron distances. 
Figure A4  The incoherent (Compton) scattering ieomp from an average atom is calculated and added to ~uc f2.  
b~gure A5  The smoothed and corrected data is scaled to ~uc f2 + icomp by the normalization procedure. 
Figure A6  Z(s), the difference between k times the corrected data and (~ue f2 + ieomp), should oscillate about zero. It 
is usually known as the interference function, k is the scaling factor (normalization constant). 
Figure A 7 The distribution of inter-electron vectors except those between electrons in the same atom [the electronic 
radial distribution function] is given by: W(r) = 4 7rr(p(r)--Oo)-/~sZ(~) sin rs ds. In other words the RDF, W(r), is 
given by the sine Fourier transform of the s-weighted interference function. 
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Figure A8 If the distribution of inter-atomic vectors is 
required, the averaged distribution of electrons about an 
atom is deconvoluted from W(r) to give the sharpened 
function G(r), known as the atomic RDF. The sharpen- 
ing is achieved by dividing the interference function Z(s) 
by (~f-)2 prior to the Fourier transform. Alternatively 
G(r) may be obtained by iterative deconvolution of W(r) 
using the electron distribution of an "average" atom. 
Figure A9 The difference between the number of electrons 
in a spherical shell (of thickness ~r, and radius r from an 
"average" atom) and the average number of electrons in a 
volume 4nr 2 8r is known as the radial density function. 
Figure AIO RDFs illustrating the effect of removing those 
inter-atomic distances fixed by the chemical configuration. 
The dashed line is, in effect, a section of Fig. 3; the full 
line is the result of removing the known distances (mainly 
nearest and next nearest neighbours). 

second nearest neighbour distances and which is 
particularly applicable to unsharpened functions 
and those derived from data over a limited range 
of  s (e.g. using CuK~ radiation), It involves normal- 
izing the corrected data to Nuc f2(s) modulated b y  
a function representing the interferences due to 
the first and second nearest-neighbour distances 
calculated with a knowledge of  the chemical 
structure. 

The process effectively removes the first two 
large peaks in the RDF. It corresponds to the 
removal of electron density from the relevant 
region of  the RDF. Hence, in order to avoid a large 
"hole" the transform of a sphere of  uniform atomic 
density and equivalent scattering power, H(s), 
[35] is also subtracted from the modulated 
independent scattering, [~uef2(S)]m, given by 

[ ~  f2(s~J] --m ~i ~, fi~ sin srlisr~i H(s). (A2) 
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Only rij values defined by the chemical structure 
are used but each appears twice, and 

H(s) - 9 ( N N f ) 2  [sin (Rs)--Rs cos (Rs)],  (A3) 
(Rs) 6 

where R is the radius of the depleted volume and 
N is the number of  atoms removed from the 
volume. 

The consequence of  applying this procedure to 
the data for PMMA is shown in Fig. A10, where the 
peaks at r = 0.33 and 0.47 nm are more clearly 
defined. 

Appendix 3: General guidelines for the 
assessment of quality of a RDF 

These are suggested in the context of  non-crystaUine 
polymers, but are mostly applicable to non- 
crystalline materials in general. To some extent 
they appear self-evident, but it is clear from the 
literature that misinterpretation can occur if they 
are not given due regard. 



A3.1. Function plotted 
Perhaps not  surprisingly, a RDF plotted as 

4 7r r ( p ( r ) -  P0) can emphasize features which are 
not  so apparent on a 4z r r2 (p ( r ) - -po )  plot and 

vice versa. Also an atomic RDF generated from 

:lata with a high range of s will give peaks for 
covalently bonded distances which are very sharp 

and correspondingly intense. Scaling these within 
the bounds of a graph can mean that important 

features at higher values of r appear relatively less 

significant than in RDFs of lower resolution. In 
this context it is instructive to compare two high 
resolution atomic RDFs generated from electron 
diffraction data of molten polythene which have 
different weightings [9, 10] with a lower resolu- 
tion electronic RDF of the same material [13]. 

A3.2. Sharpness of features 
The resolution of a RDF is limited by the Sma x 
of the data; thus if any feature is sharper than a 
sinusoidal variation of wavelength 2/r/Sma x then 
the analytical procedure should be treated with 
suspicion. Such false detail will not  arise if the 

RDF is calculated at intervals appropriate to the 
inherent resolution. In particular, the employment 
of Kaplow's method [42] and variants [43],  

where data beyond Sma x are calculated in order to 
avoid termination error, can lead to artificially 

enhanced resolution. This is evident where the 
method has been applied to polymers [6]. 

A3 .3 .  Gene ra l  a p p e a r a n c e  

The appearance of any relatively short wave- 

length ripple in a RDF of an amorphous material 
should be viewed with disquiet, for it can only 

result from sharp features in the data at high 

values of s. The most common source of ripples 

is the abrupt termination step at Smax. However, 
methods such as sampled transforms have largely 
overcome this problem. 

In general the RDF of an amorphous polymer 
will gradually damp towards zero with increasing 
r [for 4rrr2 ( ,o ( r ) - -po )  plots] and the peaks 
become correspondingly broader. 
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